Tag: build

Execute Kotlin Scripts with Gradle

Execute Kotlin Scripts with Gradle

Organize Kotlin Scripts as Gradle tasks

In this article, you will learn how you can organize multiple Kotlin scripts as Gradle tasks and make them easily executable this way. I’ve found a discussion about this here. Somebody wanted to execute Kotlin scripts with Gradle build scripts which is, of course, possible by using kotlinc as shown in this (Groovy) build script. This doesn’t look very pretty though, and, as described in the corresponding thread, isn’t very performant and manageable. Another solution would be to use Gradle scripts written with the Kotlin DSL and define custom tasks within a build.gradle.kts file, which obviously can hold and run Kotlin code naturally:

// build.gradle.kts
//
// Execute Kotlin task with:  gradle  -q foo

task("foo") {
  group = "com.kotlinexpertise"
  description = "my foo task"
  doLast {
    println("Hello from foo task")
  }
}

The problem with this approach is that, in my case, I had multiple large Kotlin scripts I wanted to make executable this way. If I had put all of them into tasks, the script would have been too bloated and hard to maintain. Note that in my case, these tasks would not contribute to the build logic directly but rather provide business-relevant tasks, which I wanted to make executable via Gradle.

Gradle buildSrc to the rescue

As described in the Gradle documentation, build logic and especially custom tasks shouldn’t live within the build script directly. Gradle, therefore, offers the possibility to use a so-called buildSrc directory. This directory is treated as an included build, i.e. Gradle automatically compiles and tests this code and makes it available on the build script classpath. The following shows a typical project structure using this special buildSrc directory:

├── build.gradle //main build
├── buildSrc
│   ├── build.gradle //build for buildSrc
│   └── src //custom plugins, taks etc.
│       ├── main
│       │   └── java
│       │       └── com
│       │           └── enterprise
│       │               ├── Deploy.java
│       │               └── DeploymentPlugin.java
│       └── test
│           └── java
│               └── com
│                   └── enterprise
│                       └── DeploymentPluginTest.java
└── settings.gradle

As you can see here, the buildSrc has its own build.gradle, in which we define dependencies and plugins for buildSrc itself. As mentioned, the compiled code will be available for the surrounding build so that you can for instance define custom tasks in the buildSrc and use them in the main build.gradle.

A Kotlin example: Execute Kotlin Scripts with Gradle

Let’s say we have two bigger tasks we want to make available as Gradle tasks, which we call task1 and task2. Both tasks are good fits to be implemented with Kotlin.

The original project build looks like this:

import org.jetbrains.kotlin.gradle.tasks.KotlinCompile

plugins {
    kotlin("jvm") version "1.2.51"
}

java.sourceSets {
    getByName("main").java.srcDirs("...")
}

repositories {
    mavenCentral()
}

dependencies {
    compile(kotlin("stdlib-jdk8"))
}

tasks.withType<KotlinCompile> {
    kotlinOptions.jvmTarget = "1.8"
}

This is very basic and there’s nothing special in it. Now, the goal is to define two custom tasks taks1 and task2 within this script. Both tasks are supposed to be executable via gradle -q task1|task2. To make this possible, we create the buildSrc directory structure as shown above on the same level the build script already exists. Within the buildSrc, we now create the custom tasks as Kotlin classes:

package com.kotlinexpertise.tasks

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction
import java.sql.DriverManager

open class Task1 : DefaultTask() {

    init {
        group = "com.kotlinexpertise"
        description = "task1"
    }

    @TaskAction
    fun run() {
        Class.forName("com.mysql.jdbc.Driver")
        //heavy task implementation
    }
}

Just like we would define a task within a Gradle build script directly, we define group, description and the task itself in a method annotated with TaskAction, which we call run. Learn more about custom tasks here. To make this a bit more interesting, we want to load a MySQL driver in this task, which requires us to make the corresponding dependency available for the buildSrc build. Let’s take a look at its build script (existing directly in buildSrc):

plugins {
    `kotlin-dsl`
}

repositories {
    mavenCentral()
}

dependencies {
    compile("mysql:mysql-connector-java:5.1.24")
}

As mentioned, we add the dependencies we want to use within the buildSrc. Another thing to note is that the org.gradle.kotlin.kotlin-dsl plugin is applied to this build in order to set up the Kotlin compiler features and dependencies to match the ones shipped with Gradle. We used the nicer alias kotlin-dsl in this example.

Now, after defining both Task1 and Task2 as subclasses of DefaultTask, they can be used in the main build.gradle.kts script like this:

import org.jetbrains.kotlin.gradle.tasks.KotlinCompile
import com.kotlinexpertise.tasks.*

//...

task<Task1>("task1")
task<Task1>("task2")

//...

Note that both probably need to be imported as shown here. In the console, gradle tasks will list them, and you can execute them by running gradle -q task1 and gradle -q task2 respectively. You can also see the tasks listed in IntelliJ IDEA:

gradle_idea

The source code can be found here: https://github.com/s1monw1/gradle_buildSrc_kotlin

You may want to read another article of mine about the Gradle Kotlin DSL to get more information about the topic. Enjoy.

Simon is a software engineer based in Germany with 7 years of experience writing code for the JVM and also with JavaScript. He’s very passionate about learning new things as often as possible and a self-appointed Kotlin enthusiast.

Please follow and like this Blog 🙂
The Power of Gradle Kotlin DSL

The Power of Gradle Kotlin DSL

-The following is based on Gradle 4.3.1-

A few weeks ago I started migrating most of my Groovy-based gradle.build scripts to Kotlin-backed gradle.build.kts scripts using the Kotlin DSL. Why would I do that? Kotlin is my language of choice and I love the idea of using a single language to do all my work. I never learned programming with Groovy and only know the bloody basics, which always makes me think: “This can’t be the best way to do things…”. Kotlin, on the other hand, is a language I use on a daily basis and therefore I know how to use the language appropriately. Additionally, Kotlin is a statically-typed language, whereas Groovy isn’t. IDEs are having hard times offering code completion and error detection at compile time when a Groovy build script is being edited. As for the Kotlin DSL, this isn’t true. Especially IntelliJ knows how to help us with Kotlin development, even in gradle.build.kts files. All these reasons made me take a deeper look at the new style Gradle offers.

Minor Impediments

It can sometimes be a bit tedious to rewrite your gradle.build into gradle.build.kts files, especially in the IDE with all its caches malfunctioning during that process. I often had to reopen my project or even reimport it before IntelliJ understood what was going on. It also often helps to use “Refresh all Gradle projects” button in the Gradle view.

Let’s take a look

The following snippet shows the first part of a working example. It was taken from one of my projects, which is a Kotlin web application based on the Vert.x toolkit. Learn more about the technology in this post I wrote earlier.

The script first defines a few global variables, mostly containing version numbers, which are used throughout the build file. Next, we can observe the plugins block that simply defines a few plugins used for the build. Most importantly, the Kotlin Gradle plugin for JVM applications is included, which we can do with the DSL-specific function kotlin(module: String), that takes its module argument and appends it to "org.jetbrains.kotlin.", which then is put into the id(plugin: String) method, the default api for applying plugins. Last but not least, we can see the listing of dependencies, which again provides a kotlin convenience method we can use to reduce redundant declarations. A similar approach can be seen with the definition of the io.vertx dependencies. In order to only once write the "io.vertx.vertx" String, which is part of every single Vert.x dependency, it’s used as a receiver of let. A first example of real idiomatic code within the build script.

//imports

//taken from the `plugins` defined later in the file
val kotlinVersion = plugins.getPlugin(KotlinPluginWrapper::class.java).kotlinPluginVersion
val kotlinCoroutinesVersion = "0.19.3"

val vertxVersion = "3.5.0" //
val nexusRepo = "http://x.x.x.x:8080/nexus/content/repositories/releases"

plugins {
    kotlin("jvm").version("1.2.0")
    application
    java
    `maven-publish`
}

dependencies {
    compile(kotlin("stdlib", kotlinVersion))
    compile(kotlin("reflect", kotlinVersion))
    compile("org.jetbrains.kotlinx:kotlinx-coroutines-core:$kotlinCoroutinesVersion")

    "io.vertx:vertx".let { v ->
        compile("$v-lang-kotlin:$vertxVersion")
        compile("$v-lang-kotlin-coroutines:$vertxVersion")
        compile("$v-web:$vertxVersion")
        compile("$v-mongo-client:$vertxVersion")
        compile("$v-health-check:$vertxVersion")
        compile("$v-web-templ-thymeleaf:$vertxVersion")
    }

    compile("org.slf4j:slf4j-api:1.7.14")
    compile("ch.qos.logback:logback-classic:1.1.3")
    compile("com.fasterxml.jackson.module:jackson-module-kotlin:2.9.0.pr3")

    testCompile(kotlin("test", kotlinVersion))
    testCompile(kotlin("test-junit", kotlinVersion))
    testCompile("io.vertx:vertx-unit:$vertxVersion")
    testCompile("org.mockito:mockito-core:2.6.2")
    testCompile("junit:junit:4.11")
}

// Part 2
}

The second part of the example project starts with defining repositories, which are used to find dependencies and plugins declared earlier. Again, we see an example of simplifying the code with the help of using the language: The custom Maven repositories are defined using the functional method forEach, and thus shortens the boilerplate. After that, the plugins are being configured, which for instance is necessary for enabling coroutine support or defining the application properties. Finally, we can observe a sequence of task configurations that control the behavior of single build steps, e.g. tests.

// ...Part 1

repositories {
    mavenCentral()
    jcenter()
    listOf("https://www.seasar.org/maven/maven2/",
        "https://plugins.gradle.org/m2/",
        nexusRepo).forEach {
        maven { url = uri(it) }
    }
}

kotlin {
    experimental.coroutines = Coroutines.ENABLE
}

application {
    group = "de.swirtz"
    version = "1.0.0"
    applicationName = "gradle-kotlindsl"
    mainClassName = "de.swirtz.ApplicationKt"
}

publishing {
    repositories {
        maven {
            url = uri(nexusRepo)
        }
    }
    if (!project.hasProperty("jenkins")) {
        println("Property 'jenkins' not set. Publishing only to MavenLocal")
    } else {
        (publications) {
            "maven"(MavenPublication::class) {
                from(components["java"])
            }
        }
    }
}

tasks {
    withType {
        kotlinOptions.jvmTarget = "1.8"
    }

    withType {
        testLogging.showStandardStreams = true
    }

    withType {
        manifest {
            attributes["Main-Class"] = application.mainClassName
        }
        from(configurations.runtime.map { if (it.isDirectory) it else zipTree(it) })
    }

    withType {
        finalizedBy("publishToMavenLocal")
    }
}

The Result

We’ve seen a rather simple build script written with the Gradle Kotlin DSL. I made use of a few idiomatic Kotlin functions in order to show the power of such .kts files. Especially for Kotlin developers, it can make much sense to completely switch to the shown approach. IntelliJ does support the creation of new build.gradle.kts files by default when you open the “New” option in “Project” view.

There will be situations, which make you want to ask somebody for help. I recommend reaching out directly in the corresponding Kotlin Slack channel: gradle.

I hope I could inspire you to give it a try! Good Luck 🙂

The whole script as a Gist

Simon is a software engineer based in Germany with 7 years of experience writing code for the JVM and also with JavaScript. He’s very passionate about learning new things as often as possible and a self-appointed Kotlin enthusiast.

Please follow and like this Blog 🙂