Tag: java

Run Kotlin Scripts (kts) from regular Kotlin Programs

Run Kotlin Scripts (kts) from regular Kotlin Programs

Run Kotlin Scripts from Kotlin Programs

This article presents a way to run Kotlin scripts from Kotlin programs in order to leverage the power of DSLs.

Kotlin can be used as a scripting language. Simply write top-level executable code inside a file with .kts extension and run it with the kotlinc as described in the documentation. That’s also the format of Gradle build files that are used in combination with the Gradle Kotlin DSL like this gradle.build.kts. Gradle shows a fantastic example of a domain specific language that can be written standalone in .kts files to be read by the gradle tool later on. When we try to find a way to do the same with custom DSLs (Tutorial can be found here), we first need to know how to run Kotlin scripts from Kotlin programs. The article reveals how to do so.

The Java Scripting API (JSR-223)

The Java Scripting API is a tool for using scripting engines (such as Nashorn) from Java code. It enables users to write customizable scripting code that can be picked up by the Java application at runtime. In a way, the API is a neat way of writing extensible applications.

As of Kotlin 1.1, the corresponding JSR-223 is supported for Kotlin Scripts, too. That means that it’s possible to run Kotlin scripts from regular Kotlin programs in order to make applications customizable through these scripts.

Using the Kotlin Script Engine

In order to use the mentioned Kotlin script engine, a file called javax.script.ScriptEngineFactory has to be placed inside META-INF/services of your application. It should contain the following entry: org.jetbrains.kotlin.script.jsr223.KotlinJsr223JvmLocalScriptEngineFactory.
After that, the javax.script.ScriptEngineManager will be able to find the corresponding engine when looked up via ScriptEngineManager().getEngineByExtension("kts"). This code now finds the Kotlin ScriptEngine implementation, an instance that can be used to evaluate String-based scripts such as "5 + 2", or directly read scripts from the file system. Here’s a short example:

with(ScriptEngineManager().getEngineByExtension("kts")) {
    eval("val x = 3")
    val res2 = eval("x + 2")
    assertEquals(5, res2)
}

You could also compile scripts and evaluate them later:

val script = compile("""listOf(1,2,3).joinToString(":")""")
assertEquals(listOf(1, 2, 3).joinToString(":"), script.eval())

Wrapping the glue code in a library

As shown, executing Kotlin scripts from Kotlin programs is pretty easy due to the Java scripting API implementation for Kotlin. Nevertheless, since it’s a bit cumbersome to integrate the support into an application, I wrote a tiny library that encapsulates the Scripting API glue code. It is called KtsRunner and can be found on GitHub.

The KtsRunner is a lightweight tool for executing Kotlin scripts from your custom applications. The API, as of the very first version, provides a slim KtsObjectLoader class whose usage is shown in the following example:

data class ClassFromScript(val x: String)
import de.swirtz.ktsobjectloader.ClassFromScript

ClassFromScript("I was created in kts")

The previous snippets show the definition of some arbitrary data class and the code that instantiates an object of it. The object instantiation is basically what we write into a .kts file.

val scriptReader = Files.newBufferedReader(Paths.get("path/classDeclaration.kts"))
val loadedObj: ClassFromScript = KtsObjectLoader().load<ClassFromScript>(scriptReader)
assertEquals("I was created in kts", loadedObj.x)

Using the KtsObjectLoader makes it simple to load the correspoding object of ClassFromScript from the script file. Alternatively, the script could also be provided as a String:

val scriptContent = "5 + 10"
val result: Int = KtsObjectLoader().load<Int>(scriptContent))
assertEquals(15, result)

Adequate Usage Scenario

As mentioned in the beginning, it can make sense to make your application customizable through external scripts, similar to how Gradle can be extended with any custom build script. Imagine an application that provides a test suite runtime. The actual test cases are provided by technical testers who write their test scripts using a domain specific language that is provided by the main application. Since you don’t want testers to add source files (defining new test cases) to your application all the time, the test case creation is made in independent .kts files in which the DSL is utilized by the testing team. The test suite main application can use the presented KtsRunner library for loading the test cases provided in .kts files and process them further afterward.

An example

A pretty popular DSL for Kotlin is kotlinx.html, a language for describing type-safe HTML. You let the client of your application provide some arbitrary HTML that you want to render at a later time. The HTML DSL code is provided as .kts script files and might look like this:

import kotlinx.html.*
import kotlinx.html.dom.create
import org.w3c.dom.Element
import java.io.OutputStream
import java.io.OutputStreamWriter
import javax.xml.parsers.DocumentBuilderFactory

val document = DocumentBuilderFactory.newInstance().newDocumentBuilder().newDocument()
document.create.html {
    head {
        title("Hello world")
    }
    body {
        h1("h1Class") {
            style = "background-color:red"
            +"My header1"
        }
        p("pClass") {
            +"paragraph1"
        }
    }
}

When executed, an instance of org.w3c.dom.Element is created that contains the described HTML code in an XML document:

<?xml version="1.0" encoding="UTF-8"?><html>
    <head>
        <title>Hello world</title>
    </head>
    <body>
        <h1 class="h1Class" style="background-color:red">My header1</h1>
        <p class="pClass">paragraph1</p>
    </body>
</html>

That’s straightforward but the interesting part is that the script should actually be executed from the main program. For this purpose, we add the KtsRunner to the application by adding a repository and the dependency itself to the Gradle build file:

maven { 
    setUrl("https://dl.bintray.com/s1m0nw1/KtsRunner")
}
dependencies {
    //...
    compile("de.swirtz:ktsRunner:0.0.x")
}  

The final code for loading the Element from the external script looks as follows:

KtsObjectLoader().load<Element>(script)

Simple, isn’t it? Unfortunately, the shown Scripting API implementation for Kotlin is rather slow and you’ll definitely notice some performance constraints. Altogether, the KtsRunner is a very tiny tool that only encapsulates the glue code for enabling Kotlin Scripting support in random applications. The library is published on bintray and can therefore easily be used from your own application.

Please follow and like this Blog 🙂

Kotlin Features I miss most in Java – Kotlin vs Java

Kotlin Features I miss most in Java – Kotlin vs Java

Let’s write an article that covers “Kotlin vs Java” topics – I want to tell you which Kotlin features I miss most when going back to Java.

My Life as a Java Dev

Although I’m a big supporter of the Kotlin programming language, I still do a lot of Java programming on a daily basis for my employer. Since I’m aware of the great functionalities of Kotlin, I’m often struggling with Java as it has some “pitfalls”, requires additional boilerplate and misses many features.
In this post, I’d like to describe which Kotlin features I miss most when coding in Java.

new and Semicolon

Ever since I’m doing Kotlin, there are two things I always forget when coding in Java: the new keyword for constructor invocations and the annoying ; to complete statements. Kotlin doesn’t have new and even semicolons are optional. I really appreciate this decision because it reduces the “syntactic noise“.

Data classes

In Kotlin, data classes are used for simple data containers, representing JSON objects or returning compound objects from functions amongst other use cases. Of course, Java doesn’t support this special type of classes yet. As a result, I often have to implement my own data class, which means a lot of boilerplate in Java.

One special use case is compound objects returned from functions. For example, let’s imagine a function that needs to return two objects. In Kotlin we could use a data class, or simpler, a Pair directly. In Java, I tend to create a value object, which is a class with several final fields, each of which instantiated through the constructor. Similar to Kotlin, I don’t implement getters and setters, but use the class’s fields directly as public properties. Unfortunately, this is not what we learned as best practice and most Java code style checkers will complain about it. I do not see any encapsulation issues here and it’s the least verbose approach in Java. The following shows such a compound object, the inner class Multi. In Kotlin this would be a one-liner.

public class MultiReturn {

    public static void main(String[] args) {
        new MultiReturn().useMulti();
    }

    public void useMulti() {
        Multi multi = helper();
        System.out.println("Multi with " + multi.count + " and " + multi.name);
    }

    private Multi helper() {
        return new Multi(2, "test");
    }
    
    private static class Multi {
        private final int count;
        private final String name;

        public Multi(int count, String name) {
            this.count = count;
            this.name = name;
        }
    }
}

Local Functions

In many situations, we tend to create private methods that are only used inside another single method in order to make this one more readable. In Kotlin, we can use local functions, i.e. functions inside functions (inside functions…), which enables some kind of scope. For me, this is a much cleaner approach, because the function is only accessible inside the function that actually uses the local one. Let’s look at an example.


fun deployVerticles() {

    fun deploy(verticleClassName: String) {
        vertx.deployVerticle(verticleClassName, opt, { deploy ->
            LOG.info("$verticleClassName has been deployed? ${deploy.succeeded()}")
        })
    }

    deploy("ServiceVerticle")
    deploy("WebVerticle")
}

It’s taken from a sample vert.x application and defines a local function that is reused twice afterward. A great way to simplify your code.

Single Expression Functions

We can create single expression functions in Kotlin, i.e. functions without an actual body. Whenever a function contains only a single expression, it can be placed after a = sign following the function declaration:


fun trueOrFalse() = Random().nextBoolean()

In Java, on the other hand, we always have to use a function body enclosed in {}, which ranges over at least three lines. This is also “syntactic noise” I don’t want to see anymore. To be fair, Java 1.8 makes it possible to define lambdas which can also solve this, less readable though (Can also be applied to local functions):


public class SingleExpFun {

    private BooleanSupplier trueOrFalse = new Random()::nextBoolean;

    private boolean getNext(){
        return trueOrFalse.getAsBoolean();
    }
}

Default Parameters

One very annoying part of Java is the way methods have to be overloaded. Let’s see an example:

public class Overloade
    public static void main(String[] args) {
        Overloader o = new Overloader();
        o.testWithoutPrint(2);
        o.test(2);
    }

    public void test(int a, boolean printToConsole) {
        if (printToConsole) System.out.println("int a: " + a);
    }

    public void testWithoutPrint(int a) {
        test(a, false);
    }

    public void test(int a) {
        test(a, true);
    }

}

We can see a class with a method test(int, boolean) that is overloaded for the default case and also a convenience method is available. For more complex examples, it can lead to a lot of redundant code, which is simpler in Kotlin by using default parameters.


fun test(a: Int, printToConsole: Boolean = true) {
    if (printToConsole) println("int a: " + a)
}

fun testWithoutPrint(a: Int) = test(a, false)

fun main(args: Array) {
    testWithoutPrint(2)
    test(2)
}

Calling multiple methods on an object instance (with)

Obviously, Kotlin is more functional than Java. It makes use of higher-order functions in incredibly many situations and provides many standard library functions that can be used as such. One of my favorites is with, which I miss a lot whenever I can’t use Kotlin. The with function can be used to create scopes that actually increase the readability of code. It’s always useful when you sequentially call multiple functions on a single object.


class Turtle {
    fun penDown()
    fun penUp()
    fun turn(degrees: Double)
    fun forward(pixels: Double)
}

with(Turtle()) {
    penDown()
    for(i in 1..4) {
        forward(100.0)
        turn(90.0)
    }
    penUp()
}

The great thing is the usage of lambdas with receiver, which you can read about in one of my other posts.

Null-Safety

Whenever I work with nullable types since the time I started with Kotlin, I actually miss the type system’s tools to prevent null-related errors. Kotlin did a very good job by distinguishing nullable types from not-nullable ones. If you strictly make use of these tools, there is no chance you’ll ever see a NullpointerException at runtime.

Lambdas and Collection Processing

Kotlin places a lot of value on its lambdas. As shown in the with example earlier, there’s special syntax available for lambdas that makes its usage even more powerful. I want to underline that the way functions and especially lambdas are treated in the language makes it dramatically superior to Java. Let’s see a simple example of Java’s Streams, which were introduced along with lambdas in Java 1.8:

List list = people.stream().map(Person::getName).collect(Collectors.toList());

It’s a rather simple example of a Stream that is used to get a list of names from a list of persons. Compared to what we did before 1.8, this is awesome. Still, it’s too noisy compared to a real functional approach as pursued by Kotlin:

val list = people.map { it.name }

Or yet another example, in which salaries of employees are summed up to a total amount:

int total = employees.stream()
                      .collect(Collectors.summingInt(Employee::getSalary)));

So much simpler in Kotlin:

val total = employees.sumBy { it.salary }

The Kotlin examples show how simple it can be. Java isn’t a functional language and has a hard time trying to adopt functional features like lambdas and streams as we can easily observe in the snippets. It really sucks to go back to Java, if you ever experienced the beauty of Kotlin. Have you ever tried to use Eclipse after being familiar with IntelliJ? You know what I mean then.

Wrap-up

In this short post, I presented you my top Kotlin features I always miss when coding in Java. It’s just a selection of things, which will hopefully find their way into the Java language soon. But to be honest, there’s no reason to always wait for Java, when there already is a much sweeter language available… I want to point out, that starting with Kotlin really made me a much better programmer because I began wondering about certain features in both languages and also try to find ways to use Kotlin-dedicated things in Java by finding workarounds like arranging my code differently.

I’d be interested in the features you like most, feel free to comment.
Also, if you like, have a look at my Twitter account and follow if you’re interested in more Kotlin stuff 🙂 Thanks a lot.

If you want to read more about Kotlin’s beautiful features I recommend the book Kotlin in Action and my other articles to you.

Please follow and like this Blog 🙂

Create a DSL in Kotlin

Create a DSL in Kotlin

Kotlin as a programming language provides some very powerful features, which allow the creation of custom internal Domain Specific Languages (DSL).  One of these features, I also wrote about on this blog, is called Function Literals with Receiver, others are the invoke convention or infix notation. In this article, I will show how to create a Kotlin DSL by introducing a library that exposes a DSL as its API. I’ve often been struggling with Java’s API when I had to set up SSL/TLS connections in scenarios where I e.g. needed to implement HTTPS communication. I always felt like wanting to write a little library that can support me with this task, hiding away all the difficulties and of course the boilerplate needed for it.

Please follow and like this Blog 🙂

Kotlin Operator Overloading – Working by Convention

Kotlin Operator Overloading – Working by Convention

Kotlin Operator Overloading and Conventions

Introduction

Kotlin supports a technique called conventions, everyone should be familiar with. For example, if you define a special method plus in your class, you can use the + operator by convention: Kotlin Operator Overloading.
In this article, I want to show you which conventions you can use and I will also provide a few Kotlin code examples that demonstrate the concepts.

Read More Read More

Please follow and like this Blog 🙂

Kotlin on the JVM – Bytecode Generation

Kotlin on the JVM – Bytecode Generation

Kotlin on the JVM – How can it provide so many features?

Introduction

What exactly is a “JVM language”, what is Kotlin? Isn’t only Java meant to run on the JVM?
Kotlin provides many features that aren’t available in Java such as proper function types, extension functions and data classes. How is this even possible? I’ve taken a deeper look at how Kotlin works under the hood and what “JVM language” actually means. We’ll be having a look at Kotlin’s bytecode generation. If you also thought about these things already, this article should bring some light into the darkness 🙂

For a more detailed introduction to Kotlin’s features you can have a look at my Getting Started Guide.

Please follow and like this Blog 🙂

Kotlin Sealed Class – An Explanation

Kotlin Sealed Class – An Explanation

Today I came across the Kotlin Sealed Class which I had never heard of before. After some research, I found that this concept is nothing new and is also available in Scala for example. So, yet another Scala feature JetBrains considered relevant and suitable for Kotlin? I like that 🙂 Read this post if you’re interested in more Kotlin features.

Actually, this is a quite simple feature, which I’m going to explain in the following.

Kotlin Sealed Class – Feature Explanation

A sealed class can be subclassed and may include abstract methods, which means that sealed classes are abstract implicitly, although the documentation doesn’t clearly say so. To actually make a class “sealed” we have to put the sealed modifier before its name, as we can see here:

sealed class MyClass

Restriction

The important thing about sealed classes is that its subclasses must be declared in the same file as the sealed class itself.

Benefit

The feature allows us to define class hierarchies that are restricted in their types, i.e. subclasses. Since all subclasses need to be defined inside the file of the sealed class, there’s no chance of unknown subclasses which the compiler doesn’t know about.

Wait… Isn’t this what an enum actually is?

A Kotlin sealed class is some kind of extension of plain enums: As opposed to enums, subclasses of sealed classes can be instantiated multiple times and can actually contain state.

Use Case

The main advantage of sealed classes reveals itself if it’s used in when expressions. Let’s compare a normal class hierarchy to one of a sealed class handled in a when. First, we’ll create a hierarchy of Mammals and then put it in a method with a when:

open class Mammal(val name: String)
class Cat(val catName: String) : Mammal(catName)
class Human(val humanName: String, val job: String) : Mammal(humanName)
fun greetMammal(mammal: Mammal): String {
    when (mammal) {
        is Human -> return "Hello ${mammal.name}; You're working as a ${mammal.job}"
        is Cat -> return "Hello ${mammal.name}"
        else -> return "Hello unknown"
    }
}

The else is mandatory, otherwise, the compiler will complain. This is because it just cannot verify that all possible cases, i.e. subclasses, are covered here. It may be possible that a subclass Dog is available at any time which is unknown at compile time.

Sealed “to the rescue”

But what if we knew there wouldn’t be other Mammals in our application? We’d want to leave out the else block.

The problem of unknown subclasses can be avoided by sealed classes. Let’s modify the base class Mammal, its’ subclasses can remain the same.

sealed class Mammal(val name: String)

Now we can simply omit the else clause since the compiler can verify that all possible cases are covered because only the subclasses in the file of the sealed class exist, without exception. The method now looks as follows:

fun greetMammal(mammal: Mammal): String {
    when (mammal) {
        is Human -> return "Hello ${mammal.name}; You're working as a ${mammal.job}"
        is Cat -> return "Hello ${mammal.name}"
        // `else` clause not required, all the cases covered 
    }
}

That’s it. In conclusion really simple and handy, isn’t it? Have fun trying it yourself!

Finally, if you want to read about sealed class in Kotlin in more detail I recommend the book Kotlin in Action to you!

Simon


 

Please follow and like this Blog 🙂

Kotlin Generics and Variance (Compared to Java)

Kotlin Generics and Variance (Compared to Java)

This article covers the concepts of Generics and Variance in Kotlin and compares it to Java. Kotlin Generics differ from Java’s in how users can define their type of variance. As opposed to Java, Kotlin allows defining variance on declaration-site, whereas Java only knows use-site variance.

Kotlin Generics – What is Variance?

Many programming languages support the concept of subtyping, which allows implementing hierarchies that represent relationships like “A Cat IS-An Animal“. In Java, we can either use the extends keyword in order to change/expand behavior of an existing class (inheritance) or use implements to provide implementations for an interface. According to Liskov’s substitution principle, every instance of a class A can be substituted by instances of its subtype B. The word variance, often referred to in mathematics as well, is used to describe how subtyping in complex aspects like method return types, type declarations, generic types or arrays relates to the direction of inheritance of the involved classes. There are three terms we need to take into account: Covariance, Contravariance, and Invariance.

Read More Read More

Please follow and like this Blog 🙂

Java Oracle Certification

Java Oracle Certification

Java Oracle Certification – Should you consider it?

I took the OCA SE 7 Programmer I Certification exam two years ago in 2015, which I passed successfully with a score of 86%. This year I will be taking the second exam of this certification path called OCP SE 7 Programmer II. In this post, I want to reflect why taking these kind of exams isn’t a waste of time but can be a great advantage for you as a Java developer. Of course, being certified in whatever area will increase your chances of getting a better job because certificates represent some kind of guaranty of your skills to a company. No doubt about that.

Read More Read More

Please follow and like this Blog 🙂